
DRAFT

caBIG Workspace Developer Project Form

Developers, please complete this form in advance of the caBIG kickoff meeting and return by e-
mail to adamsm@mail.nih.gov. Completed forms will be made available to all participants in
advance of the meeting to enhance workspace discussions. During our conversations with you, we
expressed the aspect of your program that we would like you to develop in the first year of the
caBIG pilot; it is this we are asking you to address - here and in your presentation.

1. Sponsoring Cancer Center

Holden Comprehensive Cancer Center, The University of Iowa.

2. Workspace

Integrative Cancer Research

3. Project or Activity

I. Transcript Annotation Prioritization Screening System (TrAPSS)
II. Clinical and Expression Database (CED)
III. Integrated Expression Environment (IEE)
IV. Custom Sequence Annotation (CSA)
V. Genotyping Management System (GenoMap)

4. Workspace needs the project meets

Projects
Needs TrAPSS CED IEE CSA GenoMap
Clinical data management tools and databases. X *
Distributed general data sharing and analysis
tools X X X X X
Translational research tools. X X *
Access to data. X X X X
Common Data Elements (CDE) and architecture. * * * *
Vocabulary and ontology tools and databases. *
Visualization and front-end tools X * X * X
Microarray and gene expression tools X X
LIMS X X
Database and datasets X X

X – yes, * - to a lesser degree

5. Stage of project maturity (Conceptual, early beta, regular end-user use at parent
center, regular use in the community)

TrAPSS: second release currently being deployed with extensive user testing and feedback on first
release.
CED: early beta; additional functionality currently being implemented
IEE: regular end-user use at parent center
CSA: extensive end-user use at parent center (approximately 2,000,000 sequences submitted to
GenBank); deployed at other institutions.

GenoMap: regular end-user use at parent center

6. Technical details of Tools

a. Software Architecture (These will likely be preliminary)
i. System design

ii. Component details
iii. Relevant standards
iv. UML schematics (if valid)
v. Size of project installed software base

b. Development Environment (tools, languages, bug tracking, etc.)

TrAPSS:
 a.i. System Design
 TrAPSS is centered around expressed transcripts within a genome context. “Target” genes
 for mutation screening are entered into the system. The gene structure, flanking genomic
 sequence, and associated sequence features and annotation are automatically acquired

from Ensembl and cached in a local database for analyses. A custom algorithm that
quantitatively assesses gene-based annotation to infer pathogenicity and guides screening
assays.

a.ii. Component Details
Univ. of Iowa components:

• PHP-web interface
• PHP modules (database interface)
• Java modules (database interface)
• Perl modules (database interface)
• Driver/GREEn (Java client interface)
• PrimerViewer (Java visualization, analysis, and primer generation/selection)
• Primer3 server (Java)
• Populate (Perl data acquisition with Ensembl)
• PrimerMananger (Java assay/primer management tool)
• SSCPTool (Java and web-based results acquisition and storage)
• Juxtipositron (Java interface for high-throughput sequence-based mutation

evaluation and visualization)

Community components:

• Apache
• MySQL
• Primer3
• Ensembl modules
• BLAST
• BLAT

a.iii. Relevant Standards:
Ensembl modules
Locally developed modules modeled after Ensembl modules.

a.iv. UML schematics (if valid)
None.

a.v. Size of project-installed software base
Approximately 10 users plus a number of users of subcomponents.

b. Development Environment (tools, languages, bug tracking, etc.)
Apache, MySQL, PHP, Perl, Java, and Ensembl Perl modules. PHP for web interface, and
Java/WebStart for application interfaces.

CED:
a.i. System Design
The Clinical and Expression Database (CED) integrates both clinical data (patient data)
with expression data (currently microarray and EST data), for analyses and annotation
utilizing: UniGene, LocusLink, GO, EC numbers, pathways, and genomic mapping
information. This facilitates clinical and expression “synergy” by enabling queries for genes
and tissue samples based on clinical and expression data.

 a.ii. Component details
 Webserver
 Database
 PHP interface and data loading tools.

 a.iii. Relevant standards
 MIAMI, MAGE-ML

 a.iv. UML schematics (if valid)
 None.

 a.v. Size of project-installed software base
 One base install – testing only.

b. Development Environment (tools, languages, bug tracking, etc.)
 Apache, postgress, PHP.

IEE:

a.i. System Design
The Integrated Expression Environment (IEE) is web-based data management system for
expression-based technologies (Affymetrix gene chips, printed glass slides, SAGE, MPSS,
etc.) that enables the sharing and distribution of data, annotation, and results between
geographically separated investigators. Microarray experiments (with annotation) are
loaded into the system. Specific analyses may be automated for availability to the broad
range of data within the system.

 a.ii. Component details
 Webserver
 Database
 PHP interface
 Perl for annotation acquisition and generation.
 Affymetrix web-site (for annotation)

 a.iii. Relevant standards
 MIAMI, MAGE-ML

 a.iv. UML schematics (if valid)
 None.

 a.v. Size of project-installed software base
 One install base, multiple on-site users.

b. Development Environment (tools, languages, bug tracking, etc.)

 Apache, Perl, Java, XML/MAGEML, MySQL,

CSA:
 a.i. System Design.

Sequences are loaded, and a series of annotation analyses are specified. The resulting
computation(s) are executed and stored in a database. Results are presented via a web
server. Currently implemented components include sequence extraction (phred; Ewing et
al, 199x), feature annotation (ESTprep; Scheetz et al. 2003), sequence homology (BLAST;
Altshul et al. 199x), sequence clustering (UIcluster; Trivedi et al. 200x), sequence
assembly (phrap; ??).

a.ii. Component Details
phred
ESTprep
BLAST (with Bioperl)
UIcluster
Phrap
Database
webserver

a.iii. Relevant standards
FASTA, BioPerl

a.iv. UML schematics
(none)

a.v. Size of project-installed software base
1 software base (multiple users) + components distributed to multiple off-campus sites.

b. Development Environment (tools, languages, bug tracking, etc.)
Perl, C, MySQL, Apache, Linux

GenoMap:
 a.i. System Design

Patient/clinical data are entered for the purpose of genotyping. Marker data from
Marshfield is loaded. Digitized images of genotyping gels are read with custom, automated
genotype reading software. Genotypes are validated by redundancy, for Mendelian
consistency, and stored. Formatted linkage files may then be exported for analyses.

 a.ii. Component details
 GenoMap (web interface to tools)
 GenoScape (C-based automated genotype-calling application)
 SubjectLog (Java patient entry)
 MarkerLog (Java marker management)
 Verification (Java genotype comparison and Mendel check)
 ExperimentEditor (Java experiment design tool)
 Lanalysis (Java linkage analysis data exporter and formatter)
 Servers for applet client/server communication
 Database
 webserver

 a.iii. Relevant standards
 Linkage format

 a.iv. UML schematics (if valid)
 None.

 a.v. Size of project-installed software base
 One installation, 6 users.

b. Development Environment (tools, languages, bug tracking, etc.)
 C, Java, Sybase, SQL

7. Does the project make use of existing standards? If so, what are they?
(e.g. bioinformatics standards such as MIAME for microarrays, or software standards
such as XML)

Yes, see #6 above for each project.

8. Does other software in the community meet this need? Is this software open
source? Can it be harnessed?

CED: Unique software that can be harnessed. Open source.
TrAPSS: Unique software that can be harnessed.
IEE: Some unique software that can be harnessed with other software in community available.
Open source.
CSA: Unique software that can be harnessed with integration of pre-existing components. Open
source.
GenoMap: Some unique software that can be harnessed with other commercial software in
community. Open source.

9. Points of possible interoperability with other caBIG systems
(This might include communication with other caBIG databases, use of caCORE APIs,
caBIG-compatible APIs, etc.)

We are enthusiastic about participating with caBIG interoperability as soon as decisions about
projects are made and specifications for such modules become available (such as adopting the
caBIO). However, since we cannot predict what standards will be adopted by caBIG participants,
for this section of the document we assume that the caBIO will be adopted as a basis for
interoperability.

TrAPSS: integration with site-specific data/databases for locally generated expression data for
candidate prioritization. Interoperability for expression data between TrAPSS and other caBIG
modules would be achieved with the caBIO/(SOAP) API using PERL. Note, TrAPSS already has
similar interoperability with Ensembl so utilizing the caBIO would be a modification of existing
modules.

CED: high potential for interoperability with: clinical data, expression data, and annotation. The
Clinical and Expression Database would achieve interoperability with either the caBIO Java API and
SOAP API with Perl.

IEE: high potential for interoperability for expression data, annotation, and analyses. The
Integrated Expression Environment would achieve interoperability of expression and annotation

data with the caBIO (Java and SOAP APIs). However, for analyses additional APIs would need to
be developed for caBIG interoperability.

CSA: already has high degree of interoperability between components. Interoperability with caBIG
would require the development of import and export modules consistent with the caBIO (utilizing
either the Java or SOAP APIs).

GenoMap: stand-alone system for genotyping.

10. What resources are proposed to achieve caBIG interoperability?

a. Developmental requirements
i. Software (re)engineering

ii. Standards adoption
iii. Platform migration

 b. Infrastructure
i. Facilities
ii. Management tools
iii. Personnel

TrAPSS:
 a.i. Software (re)engineering

Currently finalizing second complete implementation. The data interfaces may need to be
modified to be compatible with other caBIG modules. The caBIo Data Access Objects may
be rapidly adopted by developing new TrAPSS modules compatible with the Data Access
Objects.

a.ii. Standards adoption
Standards for data exchange will need to be adopted (based upon caBIG community
needs) and implemented.

a.iii. Platform migration
Platform independent (Java Webstart; Windows, Linux, and Mac). Server-side applications
currently run under Linux.

b.i. Facilities

b.ii. Management tools

b.iii. Personnel
3 staff programmers, and 4 students.

CED:
 a.i. Software (re)engineering

Additional software will need to be implemented to be compatible with other caBIG
modules.

a.ii. Standards adoption
Standards for data exchange will need to be adopted and implemented.

a.iii. Platform migration
Web-based interface is inherently portable. Current servers are on Linux platform.

b.i. Facilities

b.ii. Management tools

b.iii. Personnel
2 staff programmers, and 3 students.

IEE:
a.i. Software (re)engineering
Modifications will need to be made to be compatible with other caBIG modules.
Implemented analyses will need to be expanded.

a.ii. Standards adoption
Currently, IEE supports data exchange in several formats, including the chip composition
and expression data formats from Affymetrix (CEL, CHP, DAT), the GPR format (expression
data), ?? (spot position), and MAGEML formats. Additional standards for data exchange
and interoperability will need to be adopted and implemented as adopted by the caBIG
community.

a.iii. Platform migration
Web-based interface is inherently portable. Current server-base is Linux. The majority of
the developed code is implemented in Perl and PHP.

b.i. Facilities

b.ii. Management tools

b.iii. Personnel
2 staff programmers, and 3 students.

CSA:

a.i. Software (re)engineering
Additional software will need to be implemented to be compatible with other caBIG
modules. Existing packages (e.g., ESTprep) could be modified to encompass more generic
forms of annotation.

a.ii. Standards adoption
Standards for data exchange will need to be adopted and implemented (upon adoption by
the caBIG community). All sequence and quality data is currently maintained in the FASTA
format.

a.iii. Platform migration
Many of the components of CSA are applications previously developed by the community
(e.g., phred, phrap). Licensing for platform migration may not be feasible. Currently
implemented in C and deployed on Linux.

b.i. Facilities

b.ii. Management tools

b.iii. Personnel
2 staff programmers, and 2 students.

GenoMap:

a.i. Software (re)engineering

A large portion of the system software will need to be ported to a more recent version of
Java. GenoMap will be reimplemented in Java to enable cross-platform portability and
compatibility.

a.ii. Standards adoption
All identifying information is removed prior to entry into the system. Exporting of
genotypes is currently supported using the mlink format.

a.iii. Platform migration
Most of the GenoMap components are written in Java and are thus platform independent,
given the Java runtime environment (Windows, Macintosh, and Linux/UNIX). The
GenoScape component is currently implemented in C/Xwindows and thus requires an
Xserver to run.

b.i. Facilities

b.ii. Management tools

b.iii. Personnel
3 staff programmers, and 2 students.

11. Draft 12-month work plan, with milestones to achieve caBIG interoperability.

TrAPSS:
Month 1) Design modules to communicate with other caBIG modules
Month 2) Design target scoring system (TSS).
Month 3) Implement communication modules
Months 4/5) Implement TSS
Month 6) Testing
Months 7/8) Deployment, user testing and feedback
Months 9/10) Bug fixes and feedback driven modifications
Months 11/12) Testing, validation, and deployment of final product.

CED:
Month 1) Design modules to communicate with other caBIG modules
Month 2) Implement communication modules
Month 3) Implement additional required functionality for new data sources/types.
Month 4) Test and validation.
Months 5/6/7) Deployment, user testing and feedback
Months 7/8) Refinement from user feedback
Months 9/10) Bug fixes and redeployment of final version.
Months 11/12) Testing and validation.

IEE:
Month 1) Design modules to communicate with other caBIG modules
Month 2) Design modules to accommodate other sources of data.
Months 3/4) Implement communication modules and other data source modules
Months 5/6/7/8) Deployment and training. Load data from multiple sites for testing and sharing.
Month 9) Design and implement automated analyses modules based on user feedback and needs.
Months 9/10) Bug fixes and feedback driven modifications.
Months 11/12) Testing, validation, and deployment of final product.

CSA:

Month 1) Design components to communicate with other caBIG modules
Month 2) Redesign components to be more generalizable and simpler to use.
Month 3) Redesign and implement ESTprep to address general sequence features.
Months 4/5/6) Testing and validation.
Months 7/8/9) Deployment, training, user testing and feedback
Months 10/11/12) Testing, validation, and final software fixes.

GenoMap:
Months 1/2) Redesign components to interface with caBIG components/projects.
Months 2/3/4/5) Port existing tools to recent version of java.
Months 5/6/7) Testing
Month 7/8) Design and implement modules to communicate with other caBIG modules.
Months 7/8/9) Deployment, training, user testing and feedback
Months 9/10) Bug fixes and feedback driven modifications
Months 11/12) Testing, validation, and deployment of final product.

